Chamber Crawler 3000

Haobei Song (Aaron)
Shangshang Zheng (Daniel)
Junheng Wang (Eason)

Introduction

Chamber Crawler 3000 is a classical rogue-like game played on the terminal
emulator on Linux supported platforms. Players are free to choose from a variety
of different characters and fight their way out by combatting against fierce
monsters along their adventure to the last floor. Meanwhile, players should come
up with appropriate strategies such as enhance their different abilities by picking
up potions, in order to survive the brutal, merciless cc3k environment created by
(CS246 staff and professors.

Overview

In our design, we adopted the Model-View-Controller pattern to organize the
whole game structure in order to potentially accommodate to various platforms.
Following general purpose programming principles in object-oriented software
design, any objects on the floor such as players, enemies, potions, even tiles, doors,
walls etc. were implemented as inherited classes from the superclass “Object”
(which is also a class inherited from Subject). Besides, the visitor pattern was not
only implemented between players and enemies but among any objects you can see
whether movable or not when you play the game, so that in principle any two
objects can interact with each other distinctively, which furthers the generalization
purpose residing in object-oriented design. Observer pattern was also used quite
often in our program to achieve interesting gameplay mechanism and to implement
the interactive display with players. Another functionality we implemented
successfully is the strategy pattern on the game controller such as to have user
decide if they want the downloadable content extension during run-time.

Updated UML

1.

The Object class was both Subject and Observers, since we thought every
object need to know their neighbors so that the enemy can be notified if
the player is around. Now only the Object class is Subject for the display
purposes. We deal with the neighborhood problem by applying a much more
efficient algorithm, which comparing the position between enemies and
player to decide whether they can attack or not.

. We used strategy pattern for two kinds of Merchant, since we thought we

need to implement two different merchant styles and switch them during
combat. Now we think it is unnecessary to implement two merchants, so we
add a Boolean field to do the check, and make the design simpler.

For game controller, in order to switch from different version, we apply the
strategy pattern. So basically, our main main controller owns three different
kinds of game controller, each represents a different kind version. One is for
test, one is for the normal version and finally the dlc version. And all of
these three versions inherit from a superclass called GameController.

Design
Interactions (Attack, Move, Pickup) Among Objects

(Visitor Pattern)
In our design, all the objects are inherited from the same class “Object”, which is a

subclass of “Subject”, so that any changes in objects can be observed by

corresponding observers (class “Observer”) such as text display and ncurses

display (DLC) and produce different output. We define the interactions between

two objects quite generally as “visiting” with different types such that a player (say

Shade) attacking an enemy (say Orc) is an interaction with “Type Attack™, a

player (Shade) or enemy (Orc) moving to a “Passage” are interactions (“Type

Move”) between player and enemy with cells but the former result is a “True”

while the latter is a “False” and also a player (such as Shade) picking up a potion

(any type) is a visiting between them with “Type Pickup”. This generalized visitor

design pattern enables us to change any features and in principle could

accommodate to any further modifications since we could customize any
interactions between two objects players could see while playing it.

Potion (Decorator Pattern)

The potion system is implemented as a decorator pattern decorating itself in our
model as we take into consideration player picking up (or trade) infinite many
potions in which strategy pattern couldn’t be applied. Each player “has a” potion
and we use a virtual method to obtain the player information which may have been
modified by the potion. In this way, it makes it much easier and neat to write the
functions dealing with combat between players and enemies as we could simply
call the same methods without any concerns and upon a player reaching next floor,
the “Potion” goes out of scope so the player information is reset automatically. The
most challenging problem is to make hp change permanently. To deal with it, we
update the hp of player every time we get access to its information.

Relation between Dragon and Dragon Hoard (Observer Pattern)
Since the dragon hoard can be picked up after the dragon is slain, we need to notify
the dragon hoard then.

Initialize objects on the floor

Since different objects belong to different classes we build “similar” constructors
with only two parameters for every concrete class inherited from class Object.
While initializing the objects randomly we could simply call the same constructor
with different type, which facilitates collaborative programming and suggests good
habits when working on large scale software developments as a team.

Game control
(Model-View-Controller pattern and Strategy pattern to implement

DLC)
Considering the MVC style, we managed to divide the model(floor), view(display),
control(game controller) apart. We believe this is quite important for the game.

With this, our game can easily add any kinds of controller (wasd control for
example), any kinds of display (text display or graphic display) without change
anything inside the model. Strategy pattern allows us to easily switch from normal
version to dlc version, we provide the user with three different main options,
considering the convenience of the TA, we separate the test version with the other
two versions. This we believe provides user the best experience ever.

Interactive Display observes every object on the floor(Observer Pattern)
In this part, instead of having only one display, we actually implements two
display window, one is simply called window, which shows the floor and all the
characters in the board. The other is called panel, which observes the player
throughout the game. We use observer pattern to achieve the interaction between
the user and our game.

Window acts as a global observer, which is attached to every single object in the
board, and the panel is like a personal channel, which only track the status of the
player. Thanks to this strategy, our program is able to display every single change
appear inside the model, which is such a good way to for the program to
communicate with our user.

Colorful display is also worth mentioned here, with this, we believe we’ve
managed to push our display into next level. (See DLC for details).

Resilience to Change
Model change

Our program is based on the much general visitor patterns among all the objects on
the floor and could in principle realize any interactions between any two objects
regardless of their mobility or distance with others. We are able to add any new
players which could have different abilities against different enemies by simply
creating a new class and add methods dealing with all the different enemies inside
of that newly built class. Moreover, we could also change the player’s behaviour
upon picking up different treasures (such as get extra money), using different
potions (special enhancement) or even distinct behavior when moving on the cells
(going through the wall or even fly over to the other chamber) by simply adding

the methods in the corresponding classes with which you want the newly added
player to have different behavior. This is the power of Visitor Pattern where we got
rid of almost all the tedious if conditions (except for the displaying, which for the
general design purpose should be able to accommodate different platform or
different styles on the same platform) and still were able to modify both the visitor
class and visited class exclusively without violating encapsulation rules compared
to modifying everything outside of the to be modified class itself such as in the
game controller. In addition, we implemented every single object in the game as a
standalone class, which are all in the different files. In other words, all modules
interact via function calls, modules only pass arrays and structures back and forth,
modules affect each other’s control flow, modules also share global data (buff
file). And all modules cooperate to perform exactly one task(accomplish the
game). With all this achieved, we can say our program reaches the so called low
coupling and high cohesion.

Display Change

Since we implemented Model-View-Controller pattern in which the input, output
and model are separated from each other, we can change the display of any objects
into different style or format freely to adapt to various platform (terminal line or
ncurses window (DLC)). We could just change the corresponding display
characters (or colors (DLC)) without any modification in the model, as we assign
each object in our main (Model) program a distinct enumerator, which could

be identified by the display (View) and decide what to display as needed.

Game Control Change

To facilitate multiple usage of our program by different users, we resort to strategy
pattern and create three different game controllers under the same base class.
Namely, we built one game controller for normal user, one for test user and one for
DLC user, but the commands are of the same as they would override corresponding
virtual methods inherited from the super game controller class. Therefore, users
can choose different version of the game based on their own need during run-time
and don’t have to remember too many commands of the same functionality within
different versions.

Answers to Questions

Question. How could you design your system so that each race could be easily
generated? Additionally, how difficult does such a solution make adding additional
classes?

All races inherit from Player superclass. When we generate a race, we can easily
create an object with specific race type. It also makes it very easy to add additional
classes because new race is a subclass of Player. The only thing we need to deal
with is to implement the extra functionality for the new race and some other special
relationship with other Objects. For instance, when we add a Vampire subclass, we
need to implement the Visit method to let it gain HP when the action is set to be
Attack. since the player class has implemented virtual methods(be visit), which
gives all its subclass the same ability being visited. Now we should only implement
the special behavior for the concrete player.

Question. How does your system handle generating different enemies? Is it
different from how you generate the player character? Why or why not?

The system will use a template method pattern to generate all the objects in the
floor. The enemies, except for the dragon, are generated based on their generating
possibilities. The method for generating different enemies is implemented
separately. The advantage is to make it easier to add more enemies (i.e. large
number and more types), since we add a new method to generate new types and
enemies. The dragon is generated when the dragon hoard is created. The player is
created in a same template method, but implemented separately, since there is only
one player and player is chosen based on the input. Therefore, it is different to
generate enemies and player.

Question. How could you implement the various abilities for the enemy characters?
Do you use the same techniques as for the player character races? Explain.

We used visitor pattern to reveal the abilities of both enemy and players during the
combat. The Player and Enemy superclass has a general be visit method for all
players and enemies, which gives the most general behavior for them. Since each
enemy and player have different abilities when encountering with different
character, we can use visitor pattern to dispatch the actual scenario that we have to
deal with. To do this, we implement the specific behavior for individual concrete
player and enemy in order to override the virtual method(be visit). As for abilities
like potion effect, gaining health etc., we can override the methods differently
according to different characters. we will use the same techniques as for the player
character. Since they are both characters, we use similar techniques in some
ways(i.e. override the virtual methods)

Question. The Decorator and Strategy patterns are possible candidates to model the
effects of potions, so that we do not need to explicitly track which potions the
player character has consumed on any particular floor. In your opinion, which
pattern would work better? Explain in detail, by weighing the
advantages/disadvantages of the two patterns.

Decorator pattern works better. The advantage of Decorator pattern is that we can
easily stack the effect of Postions, and we can easily reset the atk and def when the
player reach another floor. The disadvantage is that we need to be careful when
modify the hp of the player, since the hp is changed permanently. The advantage of
Strategy pattern is that we can easily apply each potion to the player. The
disadvantage of Strategy pattern is that we cannot easily reset the atk and def when
going into the next floor.

Question. How could you generate items so that the generation of Treasure and
Potions reuses as much code as possible? That is, how would you structure your
system so that the generation of a potion and then generation of treasure does not
duplicate code?

We have a template method to generate both treasure and potion. When generating
them, we use some helper function to randomly generate the different potions and
treasures. Since they are inherited from item, we can reuse the helper function to
generate them.

Extra Credit Features

we managed to complete WASD control, Enemy chasing, Add some more
characters and enemies, add colorful display, alternating day and night every 20
moves, and Random Floor Generation.

1. Wasd control: we use initscr(), getch(), mvprintw(), mvaddstr(), clear(),
move(), refresh(), endwin() functions inside the curses.h to achieve this. The
user can use keyboard to interact with our game.

2. Enemy chasing: we implemented one method to find the distance between
two objects, and an extra fields called chamber num. Every time when the
player walks into a new chamber, the corresponding chamber number is
assigned to the player. Then all the enemies in the same chamber would start
chasing the player. (Except the merchant, which only chase the player when
it’s under revenge mode.

3. More characters and enemies: this part, we simply add more classes into our
program, and implement each characters with different features, which takes
a lot of time but easy to achieve.

4. Colorful display: after we explore the curses.h library, we discovered that, it
also provides the ability to display color. So we used init color,
start _color(), attron(), attroff(), COLOR_PAIR etc.

5. Alternating day and night: after we have the color, we add day and night to
add more fun to the game. This is achieved by implemented two different
display color, and switch between them every 20 turns, some extra character
have special ability when the night comes.

6. Random floor generation: we think of a method to modified the given map,
which provided us new random map. Also, we have a creative way to read
chambers. After reading the floor file, we generate a random coordinate, if
the point falls inside the tile inside the unread chamber, then we use
recursion to start expending the read in chamber vector until it hits the wall
or the read tile.

Final Questions
What lessons did this project teach you about developing software in teams? If you
worked alone, what lessons did you learn about writing large programs?

First of all, it is necessary to have a plan when developing software in teams. In the
plan, we can break down the whole project into small pieces, and allocate each part
of the project to other teammates, which will remind us to make some progress
constantly. Before developing software, every teammates should know well about
what the project is going to be and what requirements we should achieve. The first
step 1s to design a UML for the program, which will give us a rough overview of
the program. In UML, the team should discuss about various design patterns that
are appropriate to use and the proper relationships between classes. The
preparation of developing a software, we think, is so important because we are able
to successfully develop a program only if we are in a right track. In addition,
during development, it is quite necessary to make the program display first. The
reason is that every team members cannot test the program until the program can
display something.

What would you have done differently if you had the chance to start over?

We will think of a more efficient method that eliminates as many fields as possible,
By using more pattern. Also, if we have another chance, we’ll pass the board to
the player, enemies, so that we can make more changes to under the subclass.

